A few useful Spherical Trigonometry Formulae

As in plane trigonometry the angles of a spherical triangle are referred to as A, B and C, and the sides a, b and c are expressed in angular measure.
$\cos \boldsymbol{a}=\cos \boldsymbol{b} \times \cos \boldsymbol{c}+\sin \boldsymbol{b} \times \sin \boldsymbol{c} \times \cos \mathbf{A}$ $\cos \boldsymbol{b}=\cos \boldsymbol{c} \times \cos \boldsymbol{a}+\sin \boldsymbol{c} \times \sin \boldsymbol{a} \times \cos \mathbf{B}$ $\cos \boldsymbol{c}=\cos \boldsymbol{a} \times \cos \boldsymbol{b}+\sin \boldsymbol{a} \times \sin \boldsymbol{b} \times \cos \mathbf{C}$
$\cos \mathbf{A}=-\cos \mathbf{B} \times \cos \mathbf{C}+\sin \mathbf{B} \times \sin \mathbf{C} \times \cos \boldsymbol{a}$ $\cos \mathbf{B}=-\cos \mathbf{C} \times \cos \mathbf{A}+\sin \mathbf{C} \times \sin \mathbf{A} \times \cos \boldsymbol{b}$
$\cos C=-\cos A \times \cos B+\sin A \times \sin B \times \cos c$

In any spherical triangle

$$
\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C}
$$

If three sides of a spherical triangle are known then:

$$
\operatorname{Hav} \mathrm{A}=\operatorname{cosec} \boldsymbol{b} \times \operatorname{cosec} \boldsymbol{c} \times \sqrt{\operatorname{hav}[\boldsymbol{a}+(\boldsymbol{b}-\boldsymbol{a}) \times \operatorname{hav}[\boldsymbol{a}-(\boldsymbol{b}-\boldsymbol{c})}
$$

In a right spherical triangle, that is with angle \mathbf{C} being a 90° angle the following hold true:
$\sin \boldsymbol{a}=\sin \mathbf{A} \times \sin \boldsymbol{c}$ $\sin \boldsymbol{b}=\sin \mathbf{B} \times \sin \boldsymbol{C}$
$\tan \boldsymbol{a}=\cos \mathbf{B} \times \tan \boldsymbol{c}$ $\tan \mathbf{a}=\tan \mathbf{A} \times \sin \boldsymbol{b}$ $\tan \boldsymbol{b}=\cos \mathbf{A} \times \tan \boldsymbol{c}$ $\tan \boldsymbol{b}=\tan \mathbf{B} \times \sin \boldsymbol{a}$
$\cos \mathbf{A}=\sin \mathbf{B} \times \cos \boldsymbol{a}$
$\cos \mathbf{B}=\sin \mathbf{A} \times \cos \boldsymbol{b}$
$\cos \boldsymbol{c}=\cos \boldsymbol{a} \times \cos \boldsymbol{b}$ $\cos \boldsymbol{c}=\cot \mathbf{B} \times \cot \mathbf{A}$

AREA

The area of a spherical triangle as measured on the surface of the earth is:
$A+B+C-p i$
Where A, B, C are expressed in Radians. To convert degrees to radians multiply by pi/180. The answer will be in Radians squared and needs to be multiplied by (180/pi * 180/pi) to give square degrees which needs to be multiplied by 3600 to give square nautical miles. Alternately multiply the answer by 11818102.86.

The area of any other spherical triangle is:
$(A+B+C-p i) \times \mathbf{R}^{\mathbf{2}}$
Where R, in radians, is the radius of the sphere on which the triangle occurs.

BACK

Copyright: Eugene Griessel - November 2000

